OpenQuantum
  • Program Overview
  • Blueprints
    • Overview
    • External Cavity Diode Laser
    • Saturated Absorption Spectroscopy
    • Ultrahigh Vacuum
    • Electromagnetics & Trapping Optics
  • Curriculum
    • Course Logistics
    • 0 - Introduction to Atomic Physics
    • 1 - External-Cavity Diode Lasers (PID Control & Electronics)
      • Theory - External-Cavity Diode Lasers (PID Loops / Electronics)
      • Experiment - External-Cavity Diode Lasers (PID Loops / Electronics)
    • 2 - External-Cavity Diode Lasers (Assembly)
      • Theory - External-Cavity Diode Lasers (Assembly)
      • Experiment - External-Cavity Diode Lasers (Assembly)
    • 3 - Interferometry (Michelson & Mach-Zehnder)
      • Theory - Interferometry (Michelson & Mach-Zehnder)
      • Experiment - Interferometry (Michelson & Mach-Zehnder)
    • 4 - Absorption Spectroscopy
      • Theory - Absorption Spectroscopy
    • 5 - Frequency-stabilisation
      • Theory - Frequency-stabilisation
      • Experiment - Frequency-Stabilisation
    • 6 - Vacuum Chambers (Cleaning & Assembly)
      • Theory - Vacuum Chambers (Cleaning & Assembly)
      • Page
    • 7 - Vacuum Chambers (Ultra-high vacuum)
      • Vacuum Chambers - ?
    • 8 - Magneto-Optical Trap (Magnetic-field coils)
    • 9 - Magneto-Optical Trap (Beam-shaping)
    • 10 - Magneto-Optical Trap (Fiberization and Laser Alignment)
    • 11 - Magneto-Optical Trap (Atom trapping)
      • Theory - Magneto-Optical Trap (Atom trapping)
  • New Format
    • Course Outline
    • AMO Physics
    • The "M" Part of MOT
      • Theory - the "M" part of MOT
      • Theory - A brief note on Selection Rules
    • 2 - Laser Physics and Control Systems
      • Theory - External-Cavity Diode Lasers (Assembly)
      • Experiment - External-Cavity Diode Lasers (Assembly)
      • Theory - External-Cavity Diode Lasers (PID Loops / Electronics)
      • Experiment - External-Cavity Diode Lasers (PID Loops / Electronics)
    • 3 - Alignment and Interferometry
      • Theory - Interferometry
    • 4 - Interferometry II
    • 5 - Absorption Spectroscopy
      • Theory - Absorption Spectroscopy
    • 6 - Saturated Absorption Spectroscopy
      • Theory - Saturated Absorption Spectroscopy
    • 7 - Laser Locking
    • 8 - Ultrahigh Vacuum
      • Theory - Ultrahigh Vacuum
    • 9 - Fiber Alignment and Beam Shaping
    • 10 - Polarimetry and Magnetometry
    • 11 - Pumping and Repumping
      • Theory - Optical Pumping
    • 12 - Trapped Atom Experiments
      • Theory - Time of Flight Measurements
  • Community
    • Participating Institutions
Powered by GitBook
On this page
  1. Blueprints

Saturated Absorption Spectroscopy

PreviousExternal Cavity Diode LaserNextUltrahigh Vacuum

Last updated 11 months ago

Saturated absorption spectroscopy is a technique used to achieve high-resolution spectroscopy in gas-phase atoms. It addresses the issue of Doppler broadening, which is the spreading of spectral lines due to the varying velocities of atoms in a gas. In this method, two laser beams—a pump beam and a counter-propagating probe beam—are directed through a rubidium vapor cell.

The pump beam saturates the transition of rubidium atoms moving with zero velocity component along the beam axis. When the probe beam encounters these saturated atoms, it experiences reduced absorption, creating a sharp, narrow peak in the absorption spectrum superimposed on the broader Doppler-broadened background. This peak corresponds to the exact transition frequency of stationary rubidium atoms.

This technique is particularly useful in laser cooling experiments, where precise control of laser frequency is crucial. For laser cooling rubidium atoms, an External Cavity Diode Laser (ECDL) is often used. By using saturated absorption spectroscopy, the frequency of the ECDL can be locked to the narrow peak in the absorption spectrum. This ensures that the laser frequency remains stable and resonant with the rubidium atoms' transition, which is essential for efficient laser cooling and trapping. This stability enables the manipulation of atomic motion, cooling the atoms to extremely low temperatures and allowing for further experiments in atomic physics and quantum mechanics.